If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+14x+3=0
a = 16; b = 14; c = +3;
Δ = b2-4ac
Δ = 142-4·16·3
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2}{2*16}=\frac{-16}{32} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2}{2*16}=\frac{-12}{32} =-3/8 $
| 4x-3+x=-33 | | .125x-6=34 | | 22y=3(7y-12) | | 2(3x+7)=37-2x | | 2(v-7)+2v=10 | | 2x+2x-10+30=360 | | 4(m-7)=2 | | 4(8x-2)-5(3x-5)=18 | | 10x-2/3=19/3+3x | | -3(x+2)^2+22=0 | | 855=j-445 | | 3w-4=-7 | | 5c+6-3c=-12 | | 6y=98 | | y/27=18 | | 8n-(2n-3n)=12 | | 8+7(x-2)=12x-5(x+4) | | x*x+12x=45 | | -26=-6+u/5 | | 8+7(x-2)=12x-5(x=4) | | 32+2x=80 | | 8=4(x+7)-2x | | -8x2=37 | | 30=2(v+3)-6v | | (6x+7)+(13x+22)=180 | | X/x-1+7=1/x-1 | | .1x-35+.3x-41=180 | | 3(2n+2)=8(6n+9)+6 | | -5x+9=12-4 | | -2.405=-7.95n+6.1n | | ((x+4)/18)=(2/9)+((x-6)/2) | | -2.405=-7.95n+61 |